Электрический двигатель основные принципы действия электродвигателей

Синхронные электродвигатели устройство и принцип действия

Синхронный двигатель. Принцип действия и устройство. Синхронный двигатель может работать в качестве генератора и двигателя. Синхронный двигатель выполнен так же, как и синхронный генератор. Его обмотка якоря I (рис. 291, а) подключена к источнику трехфазного переменного тока; в обмотку возбуждения 2 подается от постороннего источника постоянный ток. Благодаря взаимодействию вращающегося магнитного поля 4, созданного трехфазной обмоткой якоря, и поля, созданного обмоткой возбуждения, возникает электромагнитный момент М (рис. 291,б), приводящий ротор 3 во вращение. Однако в синхронном двигателе в отличие от асинхронного ротор будет разгоняться до частоты вращения n = n1, с которой вращается магнитное поле (до синхронной частоты вращения). Объяс-

Рис. 291. Электрическая (а) и электромагнитная (б) схемы синхронного электродвигателя

няется это тем, что ток в обмотку ротора подается от постороннего источника, а не индуцируется в нем магнитным полем статора и, следовательно, не зависит от частоты вращения вала двигателя. Характерной особенностью синхронного двигателя является постоянная частота вращения его ротора независимо от нагрузки.

Электромагнитный момент. Электромагнитный момент в синхронном двигателе возникает в результате взаимодействия магнитного потока ротора (потока возбуждения Фв) с вращающимся магнитным полем, создаваемым трехфазным током, протекающим по обмотке якоря (потоком якоря Фв). При холостом ходе машины оси магнитных полей статора и ротора совпадают (рис. 292,а). Поэтому электромагнитные силы I, возникающие между «полюсами» статора и полюсами ротора, направлены радиально (рис. 292, б) и электромагнитный момент машины равен нулю. При работе машины в двигательном режиме (рис. 292, в и г) ее ротор под действием приложенного к валу внешнего нагрузочного момента Мвн смещается на некоторый угол 0 против направления вращения. В этом случае в результате электромагнитного взаимодействия между ротором и статором создаются электромагнитные силы I, направленные по направлению вращения, т. е. образуется вращающий электромагнитный момент М, который стремится преодолеть действие внешнего момента Мвн. Максимум момента Мmax
соответствует углу ? = 90°, когда оси полюсов ротора расположены между осями «полюсов» статора.

Если нагрузочный момент Мвн, приложенный к валу электродвигателя, станет больше Мmax, то двигатель под действием внешнего момента Мвн останавливается; при этом по обмотке якоря неподвижного двигателя будет протекать очень большой ток. Этот режим называется выпаданием из синхронизма, он является аварийным и не должен допускаться.

При работе машины в генераторном режиме (рис. 292, д и е) ротор под действием приложенного к валу внешнего момента Мвн смещается на угол ? по направлению вращения. При этом создаются электромагнитные силы, направленные против вращения, т. е. образуется тормозной электромагнитный момент М. Таким образом, при изменении значения и направления внешнего момента на валу ротора Мвн изменяется лишь угол ? между осями полей статора и ротора, в то время как в асинхронной машине в этом случае изменяется частота вращения ротора.

Пуск в ход и регулирование частоты вращения. Синхронный двигатель не имеет начального пускового момента. Если подключить обмотку якоря к сети переменного тока, когда ротор неподвижен, а по обмотке возбуждения проходит постоянный ток, то за один период изменения тока электромагнитный момент будет дважды менять свое направление, т. е. средний момент за период будет равен нулю. Следовательно, для пуска в ход синхронного двигателя необходимо разогнать его ротор с помощью внешнего момента до частоты вращения, близкой к синхронной. Для этой цели применяют метод асинхронного пуска. Синхронный двигатель пускают в ход как асинхронный, для чего его снабжают специальной короткозамкнутой пусковой обмоткой 3 (рис. 293). В полюсные наконечники ротора 2 синхронного двигателя закладывают медные или латунные стержни, замкнутые накоротко двумя торцовыми кольцами. Пусковая обмотка выполнена подобно беличьей клетке асинхронной машины, но занимает лишь часть окружности ротора. В некоторых двигателях специальная короткозамкнутая обмотка

Читайте также:  За что платят миллионы расценки на; красивые; номера в России

Рис. 292. Электромагнитный момент в синхронной машине, образующийся в различных режимах

Рис. 293. Схема асинхронного пуска синхронного двигателя;

Рис. 294 Устройство пусковой обмотки синхронного двигателя: 1 — ротор; 2 — стержни; 3 — кольцо; 4 — обмотка возбуждения

Синхронные электрические машины. Принцип действия

Синхронно (от греч. σύγχρονα, σύγ — вместе, χρονα – время) — используется в русском языке для обозначения (наименования) процессов совпадающих во времени.

Синхронными, в электротехнике, принято называть машины переменного тока, в процессе работы которых частоты вращения ротора и вращающегося магнитного поля статора равны (n2= n1, рис.1,а). Конструктивно ротор синхронных машин выполняется так, что в его обмотках ЭДС. не индуктируется (как в асинхронных, где ЭДС индуктируется полем статорных обмоток), а магнитное поле создаётся как результат протекания постоянного тока подводимого от внешнего источника ЭДС, или с помощью постоянных магнитов.

На рис.1,б изображена схема подключения синхронной электрической машины как двигателя, где при наличии напряжения U1 на статорных обмотках 3 и Uв на обмотке 4 ротора 2 последний будет вращаться. При этом, частота вращения ротора, в установившемся режиме, будет соответствовать частоте вращения магнитного поля создаваемого обмотками статора.

Рис.1. Электромагнитная схема синхронной машины (а) и схема её подключение, как двигателя, к сети трёхфазного тока (б) , где: 1- статор, 2 – ротор, 3 — обмотка статора , 4 — обмотка возбуждения , 5- контактные кольца, 6 – щётки, n2 – частота вращения ротора, n1 – частота вращения магнитного поля статора.

Синхронные машины очень часто применяют не только как двигатели, но и как генераторы. Если вместо внешнего напряжения U1 (рис.1,б ) к выводам обмоток статора подключить нагрузку, а на обмотку ротора подать Uв (посредством контактных колец 5 и щёток 6) и начать его вращать, например соединив его с валом другого двигателя, то как результат пересечения потоком возбуждения ротора проводников обмоток статора на его фазных обмотках начнёт индуктироваться переменная э.д.с.(напряжение) и по нагрузке потечёт ток. Зависимость частоты сгенерированного таким образом напряжения от частоты вращения магнитного потока ротора:

f1 = p x n2 / 60 (1)

где: f1 – частота сгенерированного напряжения; n2 – частота вращения магнитного поля ротора; p – число пар полюсов электрической машины (генератора).

В обмотках статора (при подключённой к ним нагрузке), в свою очередь, начнёт протекать ток создающий вращающееся магнитное поле статора:

n1 = 60 x f1 / p (2)

где: n1 – частота вращающегося магнитного поля статора; f1 – частота сгенерированного в обмотках статора напряжения; p – число пар полюсов электрической машины (генератора).

Из выражений (1) и (2) следует, что n1= n2 а это означает, что частоты вращения ротора и магнитного поля статора равны, т.е. синхронны. Поэтому рассматриваемую нами машину называют синхронной. Для такой машины характерно, что результирующее магнитное поле вращается с той же частотой что и ротор, т.к. результирующий магнитный поток Фрез. создаётся в результате взаимодействий МДС обмотки возбуждения ротора(индуктора) и обмотки статора(якоря).

Для установившихся режимов работы синхронной машины характерны следующие особенности:

  • как в двигательном так и в генераторном режимах, ротор машины вращается с частотой равной частоте вращающегося магнитного поля создаваемого статором, то есть n2= n1 (рис.1,а) ;
  • частота изменений индуктируемой в обмотках статора(якоря) ЭДС Е , пропорциональна частоте вращения ротора(индуктора);
  • в обмотке ротора э.д.с. не индуктируется, а подводится извне, то есть её МДС создаётся от внешнего источника возбуждения Uв и не зависит от режима работы (двигательного или генераторного).

Очень часто вместо обмоток ротора, для создания МДС, используют набор из постоянных магнитов, что исключает необходимость использования внешнего источника возбуждения Uв.

В энергетике, синхронные машины , главным образом, применяют для преобразования механической энергии от первичных двигателей(или турбин) в электрическую энергию переменного тока, то есть в качестве генераторов. В других отраслях большее применение находят двигатели.

Синхронные двигатели бывают: с обмотками возбуждения, с постоянными магнитами, реактивные, гистерезисные, реактивно-гистерезисные, шаговые. Маломощные синхронные микродвигатели широко используют в системах автоматики, бытовых приборах, фотоаппаратах, часах и так далее. Двигатели с постоянными магнитами различной мощности применяют, в следящих приводах систем ЧПУ, в бытовой и автомобильной технике, и так далее.

Читайте также:  Audio-gd R2R 11 купить в Киеве, Харькове, Одессе, �� по Украине

Трехфазные синхронные машины широко применяют в промышленных установках, а однофазные в приводах компрессоров, вентиляторов, в автоматических приборах и так далее.

По сравнению с асинхронными, синхронные электрические двигатели выгодно отличаются гораздо большей мощностью и полезной нагрузкой. При ударных нагрузках намного лучше, чем асинхронные сохраняют постоянство частоты вращения, что немаловажно, особенно в таких отраслях как металлургия и металлообработка. Синхронные электрические двигатели могут развивать мощность до 20 тыс. киловатт и “более”…

К недостаткам синхронных электрических машин можно отнести их конструктивную сложность, наличие внешнего возбуждения обмоток ротора, сложность запуска “в отдельных случаях”, относительно высокая стоимость.

Синхронные электродвигатели. Работа и применение. Особенности

Особенностью работы двигателя является равенство скорости вращения ротора и скорости вращения магнитного потока. Поэтому скорость вала двигателя не зависит и не изменяется от величины подключаемой нагрузки. Это достигается за счет того, что индуктор синхронного электродвигателя является электромагнитом, в некоторых случаях постоянным магнитом.

Количество пар полюсов ротора одинаково с числом пар полюсов у движущегося магнитного поля. Взаимное воздействие этих полюсов дает возможность выравнивания скорости ротора. На валу в этот момент может быть любая по величине нагрузка. Она не влияет на скорость вращения индуктора.

Конструктивные особенности и принцип работы

Основными составными частями синхронного электродвигателя являются: статор, который неподвижен, и ротор, иными словами называемый индуктором. Статор имеет другое название – якорь, но от этого его суть не меняется. Эти части двигателя разделены прослойкой воздуха. Между пазами заложена трехфазная обмотка, которая чаще всего имеет соединение по схеме звезды.

Когда двигатель после запуска начал работать, токи якоря образуют движущееся магнитное поле, его вращение дает пересечение поля индуктора. В итоге такой работы двух полей возникает энергия. Магнитное поле статора по своей сути является полем его реакции. В работе генераторов такую энергию получают с помощью индукторов.

Полюсами являются электромагниты статора, работающие на постоянном токе. Статоры синхронных моторов могут выполняться по различным схемам: неявнополюсной, а также явнополюсной. Они отличаются положением полюсов.

Для снижения магнитного сопротивления и оптимизации условий прохода магнитного поля используют сердечники из ферромагнитного материала. Они находятся в роторе и якоре. Производятся они из электротехнической стали, которая содержит большое количество кремния. Это дает возможность снизить вихревые токи и увеличить электрическое сопротивление стали.

Синхронные электродвигатели имеют в своей основе принцип взаимодействия полюсов индуктора и статора. Во время пуска двигатель ускоряется до скорости вращения магнитного потока. Только при таком условии электродвигатель начинает действовать в синхронном режиме. При таком процессе магнитные поля образуют пересечение, возникает вход в синхронизацию.

Долгое время для разгона мотора применяли отдельный пусковой двигатель. Его соединяли механическим путем с синхронным мотором. При запуске ротор мотора ускорялся и достигал синхронной скорости. Далее мотор самостоятельно втягивался в синхронное движение. При выборе мощности пускового мотора руководствовались 15% мощности от номинала разгоняемого двигателя. Этого резерва мощности было достаточно для запуска синхронного двигателя, даже при наличии небольшой нагрузки.

Такой метод разгона более сложный, значительно повышает стоимость оборудования. В современных конструкциях синхронные электродвигатели не имеют такой схемы разгона. Применяют другую систему разгона. Реостатом замыкают обмотки индуктора по аналогии с асинхронным двигателем. Для запуска на ротор монтируют короткозамкнутую обмотку, являющуюся также и успокоительной обмоткой, которая предотвращает раскачивание ротора при синхронизации.

При достижении ротором номинальной скорости, к индуктору подключают постоянный ток. Однако, для пуска моторов с постоянными магнитами не обойтись без применения пусковых внешних двигателей.

В криогенных синхронных электродвигателях применяется обращенная конструкция. В ней якорь и индуктор размещены наоборот, индуктор находится на статоре, а якорь расположен на роторе. У таких машин возбуждающие обмотки состоят из сверхпроводимых материалов.

Достоинства и недостатки

Синхронные двигатели имеют основное преимущество по сравнению с асинхронными моторами тот факт, что возбуждение от постоянного тока внешнего источника дает возможность работы при значительной величине коэффициента мощности. Эта особенность дает возможность увеличить значение коэффициента мощности для общей сети благодаря включению синхронного мотора.

Синхронные электродвигатели имеют и другие достоинства:
  • Электродвигатели синхронного типа работают с повышенным коэффициентом мощности, что создает уменьшение расхода энергии и снижает потери. КПД синхронного мотора выше при той же мощности асинхронного двигателя.
  • Синхронные электродвигатели имеют момент вращения, который прямо зависит от напряжения сети. Поэтому он при уменьшении напряжения сохраняет свою мощность больше асинхронного. Это является фактором надежности подобных конструкций моторов.
Читайте также:  Маслоуловитель ваз 2112 16 клапанов Хитрости Жизни
Недостатками являются следующие отрицательные моменты:
  • При проведении сравнительного анализа конструкций двух моторов, можно отметить, что синхронные электродвигатели выполнены по более сложной схеме, поэтому их стоимость будет выше.
  • Следующим недостатком для синхронных моторов стала необходимость в источнике тока в виде выпрямителя, либо другого блока питания постоянного тока.
  • Запуск двигателя происходит по сложной схеме.
  • Регулировка скорости вала двигателя возможна только одним способом, с помощью применения частотного преобразователя.

В итоге можно сказать, что все-таки преимущества синхронных двигателей перекрывают недостатки. Поэтому двигатели такого вида широко применяются в технологических процессах, где идет постоянный непрерывный процесс, и не требуется частая остановка и запуск оборудования: на мельничном производстве, в компрессорах, дробилках, насосах и так далее.

Выбор двигателя
К вопросу приобретения синхронного электродвигателя нужно подходить, основываясь на следующие факторы:
  • Условия эксплуатации электродвигателя. По условиям выбирают тип двигателя, который может быть защищенным, открытым или закрытым. А также синхронные электродвигатели отличаются по защите токовых частей от влаги, температуры, агрессивных сред. Для взрывоопасного производства существуют специальные защиты, предотвращающие образование искр в двигателе.
  • Особенности выполнения подключения электродвигателя с потребителем.
Синхронные компенсаторы

Они служат для компенсирования коэффициента мощности в электрической сети и стабилизации номинального значения напряжения в местах подключения нагрузок к двигателю. Нормальным режимом синхронного компенсатора является режим перевозбуждения в момент отдачи в электрическую сеть реактивной мощности.

Такие компенсаторы еще называют генераторами реактивной мощности, так как они предназначены для выполнения такой же задачи, как батареи конденсаторов на подстанциях. Когда мощность нагрузок уменьшается, то часто необходимо действие синхронных компенсаторов в невозбужденном режиме при их потреблении реактивной мощности и индуктивного тока, потому что напряжение в сети старается увеличиться, а для его стабилизации на рабочем уровне нужно нагрузить сеть током индуктивности, который вызывает в сети снижение напряжения питания.

Для таких целей синхронные компенсаторы обеспечиваются регулятором автоматического возбуждения. Регулятор изменяет ток возбуждения таким образом, что напряжение на компенсаторе не изменяется.

Сфера применения

Широкое использование электродвигателей асинхронного типа со значительными недогрузками делает работу станций и энергосистем сложнее, так как уменьшается коэффициент мощности системы, это ведет к незапланированным потерям, к их неполному использованию по активной мощности. В связи с этим появилась необходимость в использовании двигателей синхронного типа, особенно для приводов механизмов значительной мощности.

Если сравнивать синхронные электродвигатели с асинхронными, то достоинством синхронных стала их работа коэффициентом мощности равном 1, благодаря действию возбуждения постоянным током. При этом они не расходуют реактивную мощность из питающей сети, а если работают с перевозбуждением, то даже отдают некоторую величину реактивной мощности для сети.

В итоге коэффициент мощности сети улучшается, и снижаются потери напряжения, увеличивается коэффициент мощности генераторов электростанций. Наибольший момент синхронного электродвигателя прямо зависит от напряжения, а у синхронного электромотора – от квадрата напряжения.

Поэтому, при уменьшении напряжения синхронный электромотор имеет по-прежнему значительную нагрузочную способность. Также, применение возможности повышения возбуждающего тока синхронных моторов дает возможность повышать их надежность эксплуатации при внезапных снижениях напряжения, и оптимизировать в таких случаях работу всей энергосистемы.

Из-за большой величины воздушного промежутка дополнительные потери в стальных сердечниках и в роторе синхронных моторов меньше, чем у двигателей асинхронного вида. Поэтому КПД синхронных моторов чаще бывает больше.

Однако устройство синхронных моторов намного сложнее, а также необходим возбудитель или другое устройство питания возбуждения. Поэтому синхронные моторы имеют более высокую стоимость по сравнению с асинхронными с короткозамкнутым ротором.

Запуск и регулировка скорости у синхронных электродвигателей имеет свои сложности. Но при больших мощностях их преимущества превосходят недостатки. Поэтому они применяются во многих местах, где не нужны частые пуски, остановки оборудования, а также нет необходимости в регулировки оборотов двигателя с приводом механизмов насосов, компрессоров, мельниц и т.д.

Ссылка на основную публикацию
Эвакуировали машину — куда звонить, что делать, как забрать
Что делать, если эвакуировали машину пошаговая инструкция для водителя Эвакуация авто, особенно во время отсутствия водителя – явление неприятное. Зная,...
Штраф и лишение прав за езду в алкогольном опьянении
Как избежать лишения прав и штрафа если попался пьяный за рулем; бесплатная консультация Законодательством РФ предусмотрен ряд наказаний и лишений...
Штрафные баллы за нарушение ПДД в 2019 году
При сдаче экзамена на площадке отменяет систему штрафных баллов ГИБДД; Автомобиль и закон ГИБДД вносить изменения в правила сдачи экзаменов...
Эвакуировали машину в Самаре — куда звонить, что делать, как забрать
Какой штраф за эвакуацию авто в 2020 году, что делать если машину эвакуировали Что делать если машину эвакуировали, как узнать...
Adblock detector